Determinants - Class XII

Related Questions with Solutions

Questions

Ouetion: 01

The system of linear equations

$$\lambda x + 2y + 2z = 5$$

$$2\lambda x + 3y + 5z = 8$$

$$4x + \lambda y + 6z = 10$$
 has:

A infinitely many solutions when $\lambda = 2$

B. no solution when $\lambda = 2$

C. No solution when $\lambda=8$

D. a unique solution when $\lambda=-8$

Quetion: 02

The value of λ such that the system

$$x-2y+z=-4,2x-y+2z=2,x+y+\lambda z=4$$
 has no solution is

A. 0

B. 1

C. -1

D. 3

Quetion: 03

If the system of linear equations

$$x + ky + 3z = 0$$

$$3x + ky - 2z = 0$$

$$3x + ky - 2z = 0
2x + 4y - 3z = 0$$

has a non-zero solutions (x,y,z) , then

A. 30

B. -10

C. 10

D. -30

Ouetion: 04

If the system of linear equations

$$x + 2ay + az = 0$$

$$x + 3by + bz = 0$$

$$x+4cy+cz=0$$
 has a non-trivial solution and a,b and $c>0$ then the minimum value of $\left(\frac{a^3+c^3}{a^3+c^3}\right)$ is

A. 1

B. 0

C. 2

D. 3

If the system of equations $x + \lambda y + 1 = 0$, $\lambda x + y + 1 = 0 \& x + y + \lambda = 0$. is consistent then the value(s) of λ is(are) -

A. 1

B. -1

C. 2

D. -2

Quetion: 06

The values of θ , λ for which the following equations

$$\sin\theta x - \cos\theta y + (\lambda + 1)z = 0; \cos\theta x + \sin\theta y - \lambda z = 0; \lambda x + (\lambda + 1)y + \cos\theta z = 0$$

have non trivial solution, is

A. $2n\pi \forall n \in I$

B.
$$n\pi \forall n \in \underline{I}$$

C. $(2n+1)\frac{\pi}{2} \forall n \in I$
D. No value possible

Solutions

Solution: 01

$$\Delta = \begin{bmatrix} \lambda & 2 & 2 \\ 2\lambda & 3 & 5 \\ 4 & \lambda & 6 \end{bmatrix}$$

$$|\Delta| = \lambda(18 - 5\lambda) - 2(12\lambda - 20) + 2(2\lambda^2 - 12)$$

$$= 18\lambda - 5\lambda^2 - 24\lambda + 40 + 4\lambda^2 - 24$$

$$= -\lambda^2 - 6\lambda + 16$$

$$If |\Delta| = 0 \Rightarrow \lambda^2 + 6\lambda - 16 = 0$$

$$(\lambda + 8)(\lambda - 2) = 0$$

$$\lambda = -8 \text{ or } \lambda = 2$$

$$If \lambda = 2 : \Delta_x = \begin{bmatrix} 5 & 2 & 2 \\ 8 & 3 & 5 \\ 10 & 2 & 6 \end{bmatrix}$$

$$|\Delta_x| = 5(18 - 10) - 2(48 - 50) + 2(16 - 30)$$

$$= 40 + 4 - 28 \neq 0$$

So no solution for $\lambda = 2$

Solution: 02

Here,
$$\Delta=\begin{vmatrix}1&-2&1\\2&-1&2\\1&1&\lambda\end{vmatrix}=1(-\lambda-2)+2(2\lambda-2)+1(2+1)=0 \text{ gives }\lambda=1$$
 and $\Delta_x=\begin{vmatrix}2&-1&2\\4&1&\lambda\end{vmatrix}$
$$\Delta_x=-4(-\lambda-2)+2(2\lambda-8)+1(2+4)\neq 0$$
 Now, for no solution, we must have $\Delta=0$. Clearly for $\lambda=1$, $\Delta=0$ and $\Delta_x\neq 0$ Hence, system of equations has no solution for $\lambda=1$.

Solution: 03

For non-zero solutions, we must have

$$\begin{vmatrix} 1 & k & 3 \\ 3 & k & -2 \\ 2 & 4 & -3 \end{vmatrix} = 0$$

$$\Rightarrow 1(-3k+8) - k(-9+4) + 3(12-2k) = 0$$
which gives $k=11$
Now, the system of equations become
$$x + 11y + 3z = 0$$
 ...[i]
$$3x + 11y - 2z = 0$$
 ...[ii]
$$2x + 4y - 3z = 0$$
 ...[iii]
The equation [i] and [iii] gives
$$3x + 15y = 0 \quad i.e. \quad x = -5y$$
Putting $x = -5y$ in [i], we get
$$-5y + 11y + 3z = 0 \Rightarrow z = -2y$$

Now
$$\frac{xz}{y^2} = \frac{(-5y)(-2y)}{y^2} = 10$$

Solution: 04

Solution: 05

For consistency of the given system of equations

$$D = \begin{vmatrix} 1 & \lambda & 1 \\ \lambda & 1 & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$$
$$\lambda^3 - 3\lambda + 2 = 0 \Rightarrow (\lambda - 1)^2 (\lambda + 2) = 0 \Rightarrow \lambda = 1 \text{ or } \lambda = -2$$

Solution: 06

For non trivial solution
$$\begin{vmatrix} \sin \theta & -\cos \theta & \lambda + 1 \\ \cos \theta & \sin \theta & -\lambda \\ \lambda & \lambda + 1 & \cos \theta \end{vmatrix} = 0; \text{ this gives}$$

$$2\cos\theta \left(\lambda^2 + \lambda + 1\right) = 0$$

Correct Options

Answer:01

Correct Options: B

Answer:02

Correct Options: B

Answer:03

Correct Options: C

Answer:04

Correct Options: C

Answer:05

Correct Options: A, D

Answer:06

Correct Options: C